## The Sensitivity Conjecture and its Resolution

#### Subrahmanyam Kalyanasundaram



Department of Computer Science and Engineering Indian Institute of Technology Hyderabad

Graphs, Matrices and Applications 12 Nov 2021



### Hao Huang

#### "Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture". Annals of Mathematics. 190 (3) Nov 2019: pp. 949–955.

Some slides are adapted from Huang's TCS+ talk slides.

# A Combinatorial Question



 $Q^3$ 

- ► The boolean hypercube Q<sup>n</sup> has vertex set {0,1}<sup>n</sup>.
- Two vertices are adjacent iff they differ in exactly one coordinate.
- The 2<sup>2</sup> red points in Q<sup>3</sup> form an independent set.
- In Q<sup>n</sup>, we can select 2<sup>n-1</sup> points that form an independent set.
- We are interested in the max degree of the graph induced by 2<sup>n−1</sup> + 1 selected points.

# A Combinatorial Question



- The boolean hypercube Q<sup>n</sup> has vertex set {0,1}<sup>n</sup>.
- Two vertices are adjacent iff they differ in exactly one coordinate.
- The 2<sup>2</sup> red points in Q<sup>3</sup> form an independent set.
- In Q<sup>n</sup>, we can select 2<sup>n-1</sup> points that form an independent set.
- ► We are interested in the max degree of the graph induced by 2<sup>n-1</sup> + 1 selected points.



- ► The red vertices give an induced path on 5 vertices.
- ▶ We can even form an induced cycle on 6 vertices.
- ► In any combination of 5 vertices, there exists a vertex of degree ≥ 2.



- ► The red vertices give an induced path on 5 vertices.
- ► We can even form an induced cycle on 6 vertices.
- In any combination of 5 vertices, there exists a vertex of degree ≥ 2.



- The nine red vertices give an induced graph with maximum degree 2.
- ► In any combination of 9 vertices, there exists a vertex of degree ≥ 2.



- The nine red vertices give an induced graph with maximum degree 2.
- ► In any combination of 9 vertices, there exists a vertex of degree ≥ 2.

What is the smallest possible value of the maximum degree of H, where H is an induced subgraph of  $Q^n$ , with  $|V(H)| = 2^{n-1} + 1$ ?

#### In other words

We want to determine the following:

$$\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v\in V(H)\}} \deg_{H} v.$$

# What is $\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v\in V(H)\}} \deg_{H} v$ ? (\*)

### Theorem (Chung, Füredi, Graham, Seymour 1988)

- ► Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  has maximum degree at least  $(1/2 o(1)) \log n$ . Ans of  $(\star) = \Omega(\log n)$ .
- ▶  $Q^n$  has a  $(2^{n-1} + 1)$ -vertex induced subgraph of maximum degree  $\lceil \sqrt{n} \rceil$ . Ans of  $(\star) \le \sqrt{n}$ .

What is 
$$\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v \in V(H)\}} \deg_H v? \quad (\star$$

Theorem (Chung, Füredi, Graham, Seymour 1988)

- ► Every (2<sup>n-1</sup> + 1)-vertex induced subgraph of Q<sup>n</sup> has maximum degree at least (1/2 − o(1)) log n. Ans of (★) = Ω(log n).
- ►  $Q^n$  has a  $(2^{n-1} + 1)$ -vertex induced subgraph of maximum degree  $\lceil \sqrt{n} \rceil$ . Ans of  $(\star) \le \sqrt{n}$ .

What is 
$$\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v\in V(H)\}} \deg_{H} v$$
? (\*)

#### Theorem (Chung, Füredi, Graham, Seymour 1988)

- ► Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  has maximum degree at least  $(1/2 o(1)) \log n$ . Ans of  $(\star) = \Omega(\log n)$ .
- ►  $Q^n$  has a  $(2^{n-1} + 1)$ -vertex induced subgraph of maximum degree  $\lceil \sqrt{n} \rceil$ . Ans of  $(\star) \le \sqrt{n}$ .

**Upper Bound:** Let  $[n] = F_1 \cup F_2 \cup \ldots \cup F_{\sqrt{n}}$ , with each  $|F_i| = \sqrt{n}$ . Let X be defined as the following set of points of  $\{0,1\}^n$ .

{even sets that contain some  $F_i$ } $\cup$ {odd sets that don't contain any  $F_i$ }. It can be verified that  $|X| = 2^{n-1} \pm 1$  while  $\Delta(X) = \Delta(X^C) = \sqrt{n}$ .

What is 
$$\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v \in V(H)\}} \deg_H v? \quad (\star$$

Theorem (Chung, Füredi, Graham, Seymour 1988)

- ► Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  has maximum degree at least  $(1/2 o(1)) \log n$ . Ans of  $(\star) = \Omega(\log n)$ .
- ►  $Q^n$  has a  $(2^{n-1} + 1)$ -vertex induced subgraph of maximum degree  $\lceil \sqrt{n} \rceil$ . Ans of  $(\star) \le \sqrt{n}$ .

#### Theorem (Huang 2019)

Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  contains a vertex of degree at least  $\sqrt{n}$ . Ans of  $(\star) = \sqrt{n}$ .

# Proof of Huang's Result

### Theorem (Huang 2019)

Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  contains a vertex of degree at least  $\sqrt{n}$ .

#### \_emma

Let G be a graph. Let  $\lambda_1$  be the largest eigenvalue of A, the adjacency matrix of G. Then

 $\lambda_1 \leq \Delta(G).$ 

**Proof:** Let **v** be an eigenvector corresponding to  $\lambda_1$ . Let  $v_i$  be the entry of **v** with the largest absolute value. Then

$$|\lambda_1 v_i| = |(A\mathbf{v})_i| = |\sum_{j \sim i} v_j| \le \Delta(G) \cdot |v_i|.$$

# Proof of Huang's Result

### Theorem (Huang 2019)

Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  contains a vertex of degree at least  $\sqrt{n}$ .

#### Lemma

Let G be a graph. Let  $\lambda_1$  be the largest eigenvalue of A, the adjacency matrix of G. Then

 $\lambda_1 \leq \Delta(G).$ 

**Proof:** Let **v** be an eigenvector corresponding to  $\lambda_1$ . Let  $v_i$  be the entry of **v** with the largest absolute value. Then

$$|\lambda_1 v_i| = |(A\mathbf{v})_i| = |\sum_{j\sim i} v_j| \leq \Delta(G) \cdot |v_i|.$$

# Elgenvalue Interlacing

### Cauchy's Interlacing Theorem

Let A be a symmetric matrix of size n, and B is a principal submatrix of A of size  $m \le n$ . Suppose the eigenvalues of A are

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n,$$

and the eigenvalues of B are

$$\mu_1 \geq \mu_2 \geq \ldots \geq \mu_m.$$

Then for  $1 \leq i \leq m$ , we have

$$\lambda_{i+n-m} \leq \mu_i \leq \lambda_i.$$

The *i*th largest eigenvalue of B is at most the *i*th largest eigenvalue of A, and the *j*th smallest eigenvalue of B is at least the *j*th smallest eigenvalue of A.

# Applying Interlacing on $Q^n$

- Let *H* be an induced subgraph of  $Q^n$  on  $2^{n-1} + 1$  vertices.
- Then  $\lambda_1(H) \geq \lambda_{2^{n-1}}(Q^n)$ .
- The eigenvalues of  $Q^n$  are

$$n^{\binom{n}{0}}, (n-2)^{\binom{n}{1}}, \ldots, (n-2i)^{\binom{n}{i}}, \ldots, (-n)^{\binom{n}{n}}.$$

Depending on the parity of *n*, we get  $\Delta(H) \ge \lambda_1(H) \ge 0$  or  $\Delta(H) \ge \lambda_1(H) \ge 1$ .

# Applying Interlacing on $Q^n$

- Let *H* be an induced subgraph of  $Q^n$  on  $2^{n-1} + 1$  vertices.
- Then  $\lambda_1(H) \geq \lambda_{2^{n-1}}(Q^n)$ .
- The eigenvalues of  $Q^n$  are

$$n^{\binom{n}{0}}, (n-2)^{\binom{n}{1}}, \dots, (n-2i)^{\binom{n}{i}}, \dots, (-n)^{\binom{n}{n}}.$$

Depending on the parity of *n*, we get  $\Delta(H) \ge \lambda_1(H) \ge 0$  or  $\Delta(H) \ge \lambda_1(H) \ge 1$ .

# Signed Adjacency Matrix

#### Lemma

For every graph, and M is a symmetric signed adjacency matrix of G with largest eigenvalue  $\lambda_1$ ,

 $\lambda_1 \leq \Delta(G).$ 

The proof is exactly the same as before!

$$|\lambda_1 v_i| = |(A\mathbf{v})_i| = |\sum_{j\sim i} v_j| \leq \Delta(G) \cdot |v_i|.$$

If we can find such an M, whose  $2^{n-1}$ th largest eigenvalue is  $\sqrt{n}$ , then we are done!

# Signed Adjacency Matrix

#### Lemma

For every graph, and M is a symmetric signed adjacency matrix of G with largest eigenvalue  $\lambda_1$ ,

 $\lambda_1 \leq \Delta(G).$ 

The proof is exactly the same as before!

$$|\lambda_1 v_i| = |(A\mathbf{v})_i| = |\sum_{j\sim i} v_j| \leq \Delta(G) \cdot |v_i|.$$

If we can find such an M, whose  $2^{n-1}$ th largest eigenvalue is  $\sqrt{n}$ , then we are done!

## The matrix M

We can view the adjacency matrix of  $Q^n$  as follows:

$$Q^1 = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \qquad Q^n = \left[ \begin{array}{cc} Q^{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & Q^{n-1} \end{array} \right].$$

- ► There are two copies of Q<sup>n-1</sup> and the identity matrix denotes the edges that connect the corresponding vertices.
- Huang considers the following matrix for obtaining the bound.

$$M_{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad M_{n} = \begin{bmatrix} M_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -M_{n-1} \end{bmatrix}$$

## The matrix M

We can view the adjacency matrix of  $Q^n$  as follows:

$$Q^1 = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \qquad Q^n = \left[ \begin{array}{cc} Q^{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & Q^{n-1} \end{array} \right].$$

- ► There are two copies of Q<sup>n-1</sup> and the identity matrix denotes the edges that connect the corresponding vertices.
- Huang considers the following matrix for obtaining the bound.

$$M_{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad M_{n} = \begin{bmatrix} M_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -M_{n-1} \end{bmatrix}$$

# Eigenvalues of $M_n$

$$M_n^2 = \begin{bmatrix} M_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -M_{n-1} \end{bmatrix} \begin{bmatrix} M_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -M_{n-1} \end{bmatrix}$$
$$= \begin{bmatrix} M_{n-1}^2 + I_{2^{n-1}} & 0 \\ 0 & M_{n-1}^2 + I_{2^{n-1}} \end{bmatrix} = nI_{2^n}.$$

- By induction,  $M_n^2 = nI$ .
- This means that all the eigenvalues of  $M_n$  are  $\pm \sqrt{n}$ .
- $M_n$  is a signed adjacency matrix of  $Q^n$ , hence trace $(M_n) = 0$ .
- The eigenvalues are  $\sqrt{n}$  and  $-\sqrt{n}$ , each with multiplicity  $2^{n-1}$ .
- In particular, the 2<sup>n−1</sup>-th largest eigenvalue is √n, completing the proof!

## Avoiding the Interlacing Theorem

- $M_n$  has eigenvalue  $\sqrt{n}$  with multiplicity  $2^{n-1}$ .
- ▶ Let *B* be the  $2^n \times 2^{n-1}$  matrix where each column is an eigenvector with eigenvalue  $\sqrt{n}$ . That is,  $M_n B = \sqrt{n}B$ .
- Let B<sup>\*</sup> be a 2<sup>n-1</sup> − 1 × 2<sup>n-1</sup> matrix consisting of the 2<sup>n-1</sup> − 1 rows of B that correspond to vertices that don't belong to H.

▶ 
$$\exists$$
 a  $2^{n-1} \times 1$  vector  $x \neq 0$  such that  $B^*x = 0$ .

- Then y = Bx is a  $2^n \times 1$  vector that is zero outside H.
- $M_n y = \sqrt{n}y$ , since y is a linear combination of columns of B.
- Then  $A(H)y = \sqrt{n}y$  since y is zero outside H.
- Therefore  $\Delta(H) \geq \lambda_1(H) \geq \sqrt{n}$ .

Exposition by Don Knuth of a comment by Shalev Ben-David on Scott Aaronson's blog.

## Avoiding the Interlacing Theorem

- $M_n$  has eigenvalue  $\sqrt{n}$  with multiplicity  $2^{n-1}$ .
- ▶ Let *B* be the  $2^n \times 2^{n-1}$  matrix where each column is an eigenvector with eigenvalue  $\sqrt{n}$ . That is,  $M_n B = \sqrt{n}B$ .
- Let B<sup>\*</sup> be a 2<sup>n-1</sup> − 1 × 2<sup>n-1</sup> matrix consisting of the 2<sup>n-1</sup> − 1 rows of B that correspond to vertices that don't belong to H.

▶ 
$$\exists$$
 a  $2^{n-1} \times 1$  vector  $x \neq 0$  such that  $B^*x = 0$ .

- Then y = Bx is a  $2^n \times 1$  vector that is zero outside H.
- $M_n y = \sqrt{n}y$ , since y is a linear combination of columns of B.
- Then  $A(H)y = \sqrt{n}y$  since y is zero outside H.
- Therefore  $\Delta(H) \geq \lambda_1(H) \geq \sqrt{n}$ .

Exposition by Don Knuth of a comment by Shalev Ben-David on Scott Aaronson's blog.

## Theorem (Hadamard's Inequality)

For an  $m \times m$  matrix M with row vectors  $\mathbf{v}_i$ ,

$$|\det(M)| \leq \prod_{i=1}^m \|\mathbf{v}_i\|.$$

#### Equality is achieved if and only if all the row vectors are orthogonal.

- Since M<sub>n</sub> is a signed adjacency matrix of Q<sup>n</sup>, Hadamard's Inequality implies |det(M<sub>n</sub>)| ≤ (√n)<sup>2<sup>n</sup></sup>.
- ► The 2<sup>n-1</sup>-th largest eigenvalue of M<sub>n</sub> is at least √n. Since the matrix is the adjacency matrix of a bipartite graph, the eigenvalues are symmetric about 0. Thus |det(M<sub>n</sub>)| ≥ (√n)<sup>2<sup>n</sup></sup>.

So we need that all rows are orthogonal: i.e.,  $M_n^T M_n = nI$ .

## Theorem (Hadamard's Inequality)

For an  $m \times m$  matrix M with row vectors  $\mathbf{v}_i$ ,

$$|\det(M)| \leq \prod_{i=1}^m \|\mathbf{v}_i\|.$$

Equality is achieved if and only if all the row vectors are orthogonal.

- Since M<sub>n</sub> is a signed adjacency matrix of Q<sup>n</sup>, Hadamard's Inequality implies |det(M<sub>n</sub>)| ≤ (√n)<sup>2<sup>n</sup></sup>.
- ► The 2<sup>n-1</sup>-th largest eigenvalue of M<sub>n</sub> is at least √n. Since the matrix is the adjacency matrix of a bipartite graph, the eigenvalues are symmetric about 0. Thus |det(M<sub>n</sub>)| ≥ (√n)<sup>2<sup>n</sup></sup>.

So we need that all rows are orthogonal: i.e.,  $M_n^T M_n = nI$ .

## Theorem (Hadamard's Inequality)

For an  $m \times m$  matrix M with row vectors  $\mathbf{v}_i$ ,

$$|\det(M)| \leq \prod_{i=1}^m \|\mathbf{v}_i\|.$$

Equality is achieved if and only if all the row vectors are orthogonal.

- ► Since  $M_n$  is a signed adjacency matrix of  $Q^n$ , Hadamard's Inequality implies  $|\det(M_n)| \le (\sqrt{n})^{2^n}$ .
- ► The 2<sup>n-1</sup>-th largest eigenvalue of M<sub>n</sub> is at least √n. Since the matrix is the adjacency matrix of a bipartite graph, the eigenvalues are symmetric about 0. Thus |det(M<sub>n</sub>)| ≥ (√n)<sup>2<sup>n</sup></sup>.

So we need that all rows are orthogonal: i.e.,  $M_n^T M_n = nI$ .

We need  $M_n^T M_n = nI$ . Let  $M_n = \begin{bmatrix} B & K \\ K & C \end{bmatrix}$ . Here B and C are signed adjacency matrices of  $Q^{n-1}$  and K is a diagonal matrix with  $\pm 1$  entries.

$$M_n^2 = \begin{bmatrix} B^2 + K^2 & BK + KC \\ KB + CK & C^2 + K^2 \end{bmatrix} = \begin{bmatrix} B^2 + I & BK + KC \\ KB + CK & C^2 + I \end{bmatrix}.$$

► 
$$B^2 = C^2 = (n-1)I$$
. So we have  $B^2 + I = C^2 + I = nI$ .

- We want BK + KC = 0, hence C = -KBK.
- If we let K = I, we get

$$M_n = \left[ \begin{array}{cc} M_{n-1} & I \\ I & -M_{n-1} \end{array} \right]$$

.

A boolean function  $f : \{0,1\}^n \to \{0,1\}$  is an assignment of  $\{0,1\}$  values to the vertices of the boolean hypercube.

#### Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input x is defined as the number of indices i, such that  $f(x) \neq f(x^{\{i\}})$ . The sensitivity s(f) of f is  $\max_x s(f, x)$ . The vector  $x^{\{i\}} \in \{0, 1\}^n$  is the same as x, with bit i flipped.

- ► AND function over *n* bits.
- OR function over *n* bits.
- ► *XOR* function over *n* bits.

• 
$$f(x) = x_1$$
.

A boolean function  $f : \{0,1\}^n \to \{0,1\}$  is an assignment of  $\{0,1\}$  values to the vertices of the boolean hypercube.

#### Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input x is defined as the number of indices i, such that  $f(x) \neq f(x^{\{i\}})$ . The sensitivity s(f) of f is  $\max_x s(f, x)$ . The vector  $x^{\{i\}} \in \{0, 1\}^n$  is the same as x, with bit i flipped.

- ► AND function over *n* bits.
- OR function over *n* bits.
- > XOR function over *n* bits.

• 
$$f(x) = x_1$$
.

A boolean function  $f : \{0,1\}^n \to \{0,1\}$  is an assignment of  $\{0,1\}$  values to the vertices of the boolean hypercube.

#### Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input x is defined as the number of indices i, such that  $f(x) \neq f(x^{\{i\}})$ . The sensitivity s(f) of f is  $\max_x s(f, x)$ . The vector  $x^{\{i\}} \in \{0, 1\}^n$  is the same as x, with bit i flipped.

AND function over n bits.

s(AND) = n

- OR function over *n* bits.
- ► XOR function over *n* bits.

• 
$$f(x) = x_1$$
.

A boolean function  $f : \{0,1\}^n \to \{0,1\}$  is an assignment of  $\{0,1\}$  values to the vertices of the boolean hypercube.

#### Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input x is defined as the number of indices i, such that  $f(x) \neq f(x^{\{i\}})$ . The sensitivity s(f) of f is  $\max_x s(f, x)$ . The vector  $x^{\{i\}} \in \{0, 1\}^n$  is the same as x, with bit i flipped.

- AND function over n bits.
- OR function over *n* bits.
- ► XOR function over *n* bits.
- $f(x) = x_1$ .

s(AND) = ns(OR) = n

A boolean function  $f : \{0,1\}^n \to \{0,1\}$  is an assignment of  $\{0,1\}$  values to the vertices of the boolean hypercube.

#### Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input x is defined as the number of indices i, such that  $f(x) \neq f(x^{\{i\}})$ . The sensitivity s(f) of f is  $\max_x s(f, x)$ . The vector  $x^{\{i\}} \in \{0, 1\}^n$  is the same as x, with bit i flipped.

- ► AND function over *n* bits.
- OR function over *n* bits.
- XOR function over n bits.

• 
$$f(x) = x_1$$
.

- s(AND) = n
  - s(OR) = n
- s(XOR) = n

A boolean function  $f : \{0,1\}^n \to \{0,1\}$  is an assignment of  $\{0,1\}$  values to the vertices of the boolean hypercube.

#### Sensitivity

Given a boolean function f, the local sensitivity s(f, x) on the input x is defined as the number of indices i, such that  $f(x) \neq f(x^{\{i\}})$ . The sensitivity s(f) of f is  $\max_x s(f, x)$ . The vector  $x^{\{i\}} \in \{0, 1\}^n$  is the same as x, with bit i flipped.

- AND function over n bits.
  - OR function over *n* bits.
- XOR function over n bits.
- ►  $f(x) = x_1$ . s(f) = 1

s(AND) = n

s(OR) = n

s(XOR) = n

#### Sensitivity

Given a boolean function  $f : \{0,1\}^n \to \{0,1\}$ . The local sensitivity s(f,x) on the input x is defined as the number of indices *i*, such that  $f(x) \neq f(x^{\{i\}})$ . The sensitivity s(f) of *f* is  $\max_x s(f,x)$ . The vector  $x^{\{i\}} \in \{0,1\}^n$  is the same as x, with bit *i* flipped.

#### Block Sensitivity

Given a boolean function  $f : \{0,1\}^n \to \{0,1\}$ . The local block sensitivity bs(f,x) on the input x is defined as the maximum number of disjoint blocks  $B_1, \ldots, B_k$  of [n], such that for each  $B_i$ ,  $f(x) \neq f(x^{B_i})$ . The block sensitivity bs(f) of f is max<sub>x</sub> bs(f,x). The vector  $x^{B_i} \in \{0,1\}^n$  is the same as x, with bits in  $B_i$  flipped.
## Sensitivity of Boolean Functions

#### Sensitivity

Given a boolean function  $f : \{0,1\}^n \to \{0,1\}$ . The local sensitivity s(f,x) on the input x is defined as the number of indices *i*, such that  $f(x) \neq f(x^{\{i\}})$ . The sensitivity s(f) of f is  $\max_x s(f,x)$ . The vector  $x^{\{i\}} \in \{0,1\}^n$  is the same as x, with bit *i* flipped.

#### Block Sensitivity

Given a boolean function  $f : \{0,1\}^n \to \{0,1\}$ . The local block sensitivity bs(f,x) on the input x is defined as the maximum number of disjoint blocks  $B_1, \ldots, B_k$  of [n], such that for each  $B_i$ ,  $f(x) \neq f(x^{B_i})$ . The block sensitivity bs(f) of f is max<sub>x</sub> bs(f,x). The vector  $x^{B_i} \in \{0,1\}^n$  is the same as x, with bits in  $B_i$  flipped.

# Block Sensitivity of Boolean Functions

### Block Sensitivity

Given a boolean function  $f : \{0,1\}^n \to \{0,1\}$ . The local block sensitivity bs(f,x) on the input x is defined as the maximum number of disjoint blocks  $B_1, \ldots, B_k$  of [n], such that for each  $B_i$ ,  $f(x) \neq f(x^{B_i})$ . The block sensitivity bs(f) of f is max<sub>x</sub> bs(f, x).

- For any non constant f,  $1 \le s(f) \le bs(f) \le n$ .
- This is because block sensitivity is a generalization of sensitivity.
- Hence bs(AND) = bs(OR) = bs(XOR) = n

► Can we upper bound bs(f) in terms of s(f)?

# Block Sensitivity of Boolean Functions

### Block Sensitivity

Given a boolean function  $f : \{0,1\}^n \to \{0,1\}$ . The local block sensitivity bs(f,x) on the input x is defined as the maximum number of disjoint blocks  $B_1, \ldots, B_k$  of [n], such that for each  $B_i$ ,  $f(x) \neq f(x^{B_i})$ . The block sensitivity bs(f) of f is max<sub>x</sub> bs(f, x).

- For any non constant f,  $1 \le s(f) \le bs(f) \le n$ .
- This is because block sensitivity is a generalization of sensitivity.
- Hence bs(AND) = bs(OR) = bs(XOR) = n
- Can we upper bound bs(f) in terms of s(f)?

# Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,

 $\mathsf{bs}(f) \le \mathsf{poly}(\mathsf{s}(f)).$ 

In other words,

 $\exists$  a constant *c* such that  $bs(f) = O(s(f)^c)$ .

• We know  $s(f) \leq bs(f)$ .

## Relevance & History

- The study of sensitivity started from the works of Cook, Dwork and Reischuk (1986).
- They showed the lower bound  $CREW(f) = \Omega(\log s(f))$
- CREW(f) is the minimum number of steps required to compute f on a CREW PRAM – Consecutive Read Exclusive Write Parallel RAM
- Later, Nisan (1989) showed  $CREW(f) = \Theta(\log bs(f))$
- Nisan (1989) and Nisan and Szegedy (1992) showed the relations between many other parameters.

### Relevance & History

Two complexity measures  $s_1$  and  $s_2$  of boolean functions are polynomially related if  $\exists C_1, C_2 > 0$ , such that for every boolean f:

$$s_2(f)^{C_1} \le s_1(f) \le s_2(f)^{C_2}$$
.

#### Polynomially related parameters

Block sensitivity Degree (as a real polynomial) Randomized query complexity Decision tree complexity Certificate complexity Approximate degree Quantum query complexity

Sensitivity Conjecture

### Relevance & History

Two complexity measures  $s_1$  and  $s_2$  of boolean functions are polynomially related if  $\exists C_1, C_2 > 0$ , such that for every boolean f:

$$s_2(f)^{C_1} \le s_1(f) \le s_2(f)^{C_2}$$
.

#### Polynomially related parameters

Block sensitivity Degree (as a real polynomial) Randomized query complexity Decision tree complexity Certificate complexity Approximate degree Quantum query complexity Sensitivity

Sensitivity Conjecture

# Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,

 $\mathsf{bs}(f) \le \mathsf{poly}(\mathsf{s}(f)).$ 

In other words,

 $\exists$  a constant *c* such that  $bs(f) = O(s(f)^c)$ .

• We will now see a function f where  $bs(f) = \Omega(s(f)^2)$ .

# Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,

 $bs(f) \leq poly(s(f)).$ 

In other words,

 $\exists$  a constant *c* such that  $bs(f) = O(s(f)^c)$ .

• We will now see a function f where  $bs(f) = \Omega(s(f)^2)$ .

Define 
$$f : \{0,1\}^{n^2} \to \{0,1\}$$
 as

$$f(x_{11},\ldots,x_{nn})=\bigvee_{i=1}^n g(x_{i1},\ldots,x_{in}),$$

where  $g(x_1, \ldots, x_n) = 1$  iff  $x_j = x_{j+1} = 1$  for some  $1 \le j \le n-1$ and all other  $x_k = 0$ .



Define 
$$f: \{0,1\}^{n^2} \rightarrow \{0,1\}$$
 as

$$f(x_{11},\ldots,x_{nn})=\bigvee_{i=1}^n g(x_{i1},\ldots,x_{in}),$$

where  $g(x_1, \ldots, x_n) = 1$  iff  $x_j = x_{j+1} = 1$  for some  $1 \le j \le n-1$ and all other  $x_k = 0$ .

Define 
$$f: \{0,1\}^{n^2} \rightarrow \{0,1\}$$
 as

$$f(x_{11},\ldots,x_{nn})=\bigvee_{i=1}^n g(x_{i1},\ldots,x_{in}),$$

where  $g(x_1, \ldots, x_n) = 1$  iff  $x_j = x_{j+1} = 1$  for some  $1 \le j \le n-1$ and all other  $x_k = 0$ .

Define 
$$f: \{0,1\}^{n^2} \rightarrow \{0,1\}$$
 as

$$f(x_{11},\ldots,x_{nn})=\bigvee_{i=1}^n g(x_{i1},\ldots,x_{in}),$$

where  $g(x_1, \ldots, x_n) = 1$  iff  $x_j = x_{j+1} = 1$  for some  $1 \le j \le n-1$ and all other  $x_k = 0$ .

Define 
$$f: \{0,1\}^{n^2} \rightarrow \{0,1\}$$
 as

$$f(x_{11},\ldots,x_{nn})=\bigvee_{i=1}^n g(x_{i1},\ldots,x_{in}),$$

where  $g(x_1, \ldots, x_n) = 1$  iff  $x_j = x_{j+1} = 1$  for some  $1 \le j \le n-1$ and all other  $x_k = 0$ .

# Sensitivity of Rubinstein Function

We will see that s(f) = O(n).

#### **Case 1:** f(x) = 0.

Every row must output 0. In such a case, each row has at most two sensitive coordinates, when the row looks like

0....010....0 or 0....111....0.

So  $s(f, x) \leq 2n$ .

Case 2: f(x) = 1.

- If at least two rows output 1, s(f, x) = 0.
- ▶ If only one row outputs 1,  $s(f, x) \le n$ .

## Sensitivity of Rubinstein Function

We will see that s(f) = O(n).

**Case 1:** f(x) = 0.

Every row must output 0. In such a case, each row has at most two sensitive coordinates, when the row looks like

 $0 \dots 0 1 0 \dots 0$  or  $0 \dots 1 1 1 \dots 0$ .

So  $s(f, x) \leq 2n$ .

Case 2: f(x) = 1.

- If at least two rows output 1, s(f, x) = 0.
- ▶ If only one row outputs 1,  $s(f, x) \le n$ .

# Sensitivity of Rubinstein Function

We will see that s(f) = O(n).

**Case 1:** f(x) = 0.

Every row must output 0. In such a case, each row has at most two sensitive coordinates, when the row looks like

 $0 \dots 010 \dots 0$  or  $0 \dots 111 \dots 0$ .

So  $s(f, x) \leq 2n$ .

**Case 2:** f(x) = 1.

- If at least two rows output 1, s(f, x) = 0.
- If only one row outputs 1,  $s(f, x) \le n$ .

### Back to sensitivity and block sensitivity

Upper bounds for bs(f) in terms of s(f):

- ▶  $bs(f) = O(s(f)4^{s(f)}).$  (Simon 1983) ▶  $bs(f) \le (e/\sqrt{2\pi})e^{s(f)}\sqrt{s(f)}.$  (Kenyon, Kutin 2004) ▶  $bs(f) \le 2s(f)-1s(f)$  (Ambaining Care Mag. Sum. Zum 2012)
- ►  $bs(f) \le 2^{S(f)-1}s(f)$ . (Ambainis, Gao, Mao, Sun, Zuo 2013)

Gaps between bs(f) and s(f):

bs(f) =  $\frac{1}{2}$ s(f)<sup>2</sup>. (Rubinstein 1995)
bs(f) =  $\frac{1}{2}$ s(f)<sup>2</sup> + s(f). (Virza 2011)
bs(f) =  $\frac{2}{3}$ s(f)<sup>2</sup> −  $\frac{1}{2}$ s(f). (Ambainis, Sun 2011)

All upper bounds are exponential, and lower bounds are quadratic.

### Back to sensitivity and block sensitivity

Upper bounds for bs(f) in terms of s(f):

### Gaps between bs(f) and s(f):

bs(f) =  $\frac{1}{2}$ s(f)<sup>2</sup>. (Rubinstein 1995)
 bs(f) =  $\frac{1}{2}$ s(f)<sup>2</sup> + s(f). (Virza 2011)
 bs(f) =  $\frac{2}{3}$ s(f)<sup>2</sup> -  $\frac{1}{2}$ s(f). (Ambainis, Sun 2011)

All upper bounds are exponential, and lower bounds are quadratic.

### Back to sensitivity and block sensitivity

Upper bounds for bs(f) in terms of s(f):

### Gaps between bs(f) and s(f):

bs(f) =  $\frac{1}{2}$ s(f)<sup>2</sup>. (Rubinstein 1995)
 bs(f) =  $\frac{1}{2}$ s(f)<sup>2</sup> + s(f). (Virza 2011)
 bs(f) =  $\frac{2}{3}$ s(f)<sup>2</sup> -  $\frac{1}{2}$ s(f). (Ambainis, Sun 2011)

All upper bounds are exponential, and lower bounds are quadratic.

### Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function  $h : \mathbb{N} \to \mathbb{R}$ .

For any induced subgraph of the *n*-dimensional boolean hypercube Q<sup>n</sup>, with |V(H)| ≠ 2<sup>n-1</sup>, we have

 $\max{\Delta(H), \Delta(Q^n \setminus H)} \ge h(n).$ 

For any boolean function f, we have  $s(f) \ge h(\deg(f))$ .

- ▶  $bs(f) \le 2 \deg(f)^2$ . (Nisan, Szegedy 1992)
- ► Hence if we show the above statement in red, this implies that bs(f) ≤ 2(h<sup>-1</sup>(s(f)))<sup>2</sup>.

### Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function  $h : \mathbb{N} \to \mathbb{R}$ .

For any induced subgraph of the *n*-dimensional boolean hypercube Q<sup>n</sup>, with |V(H)| ≠ 2<sup>n-1</sup>, we have

 $\max{\Delta(H), \Delta(Q^n \setminus H)} \ge h(n).$ 

For any boolean function f, we have  $s(f) \ge h(\deg(f))$ .

- ▶  $bs(f) \le 2 \deg(f)^2$ . (Nisan, Szegedy 1992)
- ► Hence if we show the above statement in red, this implies that bs(f) ≤ 2(h<sup>-1</sup>(s(f)))<sup>2</sup>.

### Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function  $h : \mathbb{N} \to \mathbb{R}$ .

For any induced subgraph of the *n*-dimensional boolean hypercube Q<sup>n</sup>, with |V(H)| ≠ 2<sup>n-1</sup>, we have

 $\max{\Delta(H), \Delta(Q^n \setminus H)} \ge h(n).$ 

- For any boolean function f, we have  $s(f) \ge h(\deg(f))$ .
- ▶  $bs(f) \le 2 deg(f)^2$ . (Nisan, Szegedy 1992)
- ► Hence if we show the above statement in red, this implies that bs(f) ≤ 2(h<sup>-1</sup>(s(f)))<sup>2</sup>.

# Huang's Result

### Theorem (Huang 2019)

Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  contains a vertex of degree at least  $\sqrt{n}$ .

With the Gotsman-Linial equivalence, we get:

#### Corollary

For every boolean function f,  $s(f) \ge \sqrt{\deg(f)}$ .

Tight!

```
Using bs(f) \leq 2 \deg(f)^2, we get:
```

### Corollary

For every boolean function f,  $bs(f) \le 2s(f)^4$ , proving the sensitivity conjecture!

# Huang's Result

#### Theorem (Huang 2019)

Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  contains a vertex of degree at least  $\sqrt{n}$ .

With the Gotsman-Linial equivalence, we get:

#### Corollary

For every boolean function f,  $s(f) \ge \sqrt{\deg(f)}$ .

Tight!

Using  $bs(f) \leq 2 \deg(f)^2$ , we get:

### Corollary

For every boolean function f,  $bs(f) \le 2s(f)^4$ , proving the sensitivity conjecture!

# Huang's Result

Theorem (Huang 2019)

Every  $(2^{n-1} + 1)$ -vertex induced subgraph of  $Q^n$  contains a vertex of degree at least  $\sqrt{n}$ .

With the Gotsman-Linial equivalence, we get:

#### Corollary

For every boolean function f,  $s(f) \ge \sqrt{\deg(f)}$ .

Tight!

Using  $bs(f) \leq 2 \deg(f)^2$ , we get:

### Corollary

For every boolean function f,  $bs(f) \le 2s(f)^4$ , proving the sensitivity conjecture!

Consider a monotone function  $h : \mathbb{N} \to \mathbb{R}$ .

1. For any induced subgraph of the *n*-dimensional boolean hypercube  $Q^n$ , with  $|V(H)| \neq 2^{n-1}$ , we have

 $\max{\Delta(H), \Delta(Q^n \setminus H)} \ge h(n).$ 

- 2. For any boolean function f, we have  $s(f) \ge h(\deg(f))$ .
- **3**. For any boolean function g with  $\deg(g) = n$ ,  $\operatorname{s}(g) \ge h(n)$ .
  - ▶ Gotsman, Linial showed that 1 and 2 are equivalent.
  - We only need the direction that  $1 \Rightarrow 2$ .
  - We show  $1 \Rightarrow 3 \Rightarrow 2$ .
  - S ⇒ 2 follows by letting g be a restriction of f to the support of a max degree monomial.

Consider a monotone function  $h : \mathbb{N} \to \mathbb{R}$ .

1. For any induced subgraph of the *n*-dimensional boolean hypercube  $Q^n$ , with  $|V(H)| \neq 2^{n-1}$ , we have

 $\max{\Delta(H), \Delta(Q^n \setminus H)} \ge h(n).$ 

- 2. For any boolean function f, we have  $s(f) \ge h(\deg(f))$ .
- **3**. For any boolean function g with  $\deg(g) = n$ ,  $\operatorname{s}(g) \ge h(n)$ .
  - Gotsman, Linial showed that 1 and 2 are equivalent.
  - We only need the direction that  $1 \Rightarrow 2$ .
  - We show  $1 \Rightarrow 3 \Rightarrow 2$ .
  - S ⇒ 2 follows by letting g be a restriction of f to the support of a max degree monomial.

Consider a monotone function  $h : \mathbb{N} \to \mathbb{R}$ .

1. For any induced subgraph of the *n*-dimensional boolean hypercube  $Q^n$ , with  $|V(H)| \neq 2^{n-1}$ , we have

$$\max{\Delta(H), \Delta(Q^n \setminus H)} \ge h(n).$$

- 2. For any boolean function f, we have  $s(f) \ge h(\deg(f))$ .
- 3. For any boolean function g with  $\deg(g) = n$ ,  $s(g) \ge h(n)$ .
  - Gotsman, Linial showed that 1 and 2 are equivalent.
  - We only need the direction that  $1 \Rightarrow 2$ .
  - We show  $1 \Rightarrow 3 \Rightarrow 2$ .
  - S ⇒ 2 follows by letting g be a restriction of f to the support of a max degree monomial.

Consider a monotone function  $h : \mathbb{N} \to \mathbb{R}$ .

1. For any induced subgraph of the *n*-dimensional boolean hypercube  $Q^n$ , with  $|V(H)| \neq 2^{n-1}$ , we have

 $\max{\Delta(H), \Delta(Q^n \setminus H)} \ge h(n).$ 

- 3. For any boolean function g with  $\deg(g) = n$ ,  $s(g) \ge h(n)$ .
- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $s(g) = \max{\Delta(H), \Delta(Q^n \setminus H)}.$

Consider a monotone function  $h : \mathbb{N} \to \mathbb{R}$ .

1. For any induced subgraph of the *n*-dimensional boolean hypercube  $Q^n$ , with  $|V(H)| \neq 2^{n-1}$ , we have

 $\max{\Delta(H), \Delta(Q^n \setminus H)} \ge h(n).$ 

- 3. For any boolean function g with  $\deg(g) = n$ ,  $s(g) \ge h(n)$ .
- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $s(g) = \max{\{\Delta(H), \Delta(Q^n \setminus H)\}}$ .

- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $s(g) = \max{\{\Delta(H), \Delta(Q^n \setminus H)\}}$ .



- ►  $g(x) = x_3$ .
- $\blacktriangleright g(x) = x_1 + x_3.$
- $g(x) = x_1 + x_2 + x_3$ .
- Flipping the value of odd parity x.

- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $s(g) = \max{\{\Delta(H), \Delta(Q^n \setminus H)\}}$ .



- $g(x) = x_3$ .
- $\blacktriangleright g(x) = x_1 + x_3.$
- $g(x) = x_1 + x_2 + x_3$ .
- Flipping the value of odd parity x.

- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $s(g) = \max{\{\Delta(H), \Delta(Q^n \setminus H)\}}$ .



- ►  $g(x) = x_3$ .
- $\blacktriangleright g(x) = x_1 + x_3.$
- $g(x) = x_1 + x_2 + x_3$ .
- Flipping the value of odd parity x.

- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $s(g) = \max{\{\Delta(H), \Delta(Q^n \setminus H)\}}$ .



•  $g(x) = x_3$ .

• 
$$g(x) = x_1 + x_3$$
.

- $g(x) = x_1 + x_2 + x_3$ .
- Flipping the value of odd parity x.

- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $s(g) = \max{\{\Delta(H), \Delta(Q^n \setminus H)\}}$ .



- g(x) = x<sub>3</sub>.
   g(x) = x<sub>1</sub> + x<sub>3</sub>.
- $g(x) = x_1 + x_2 + x_3$ .
- Flipping the value of odd parity x.
### The Gotsman-Linial Equivalence $(1 \Rightarrow 3)$

**Note:** For this slide alone, we consider  $g : \{0,1\}^n \rightarrow \{+1,-1\}$ .

- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- Consider the function g'(x) = g(x)p(x), where  $p(x): \{0,1\}^n \to \{+1,-1\}$  indicates the parity of x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $\max{\Delta(H), \Delta(Q^n \setminus H)} = s(g) < h(n)$ .
- $\triangleright |V(H)| |V(Q^n \setminus H)| = \mathbb{E}[g(x)p(x)] = \langle g, p \rangle = \hat{g}([n]).$
- Since deg(g) = n, we have  $\hat{g}([n]) \neq 0$ .
- ▶ Hence  $|V(H)| \neq |V(Q^n \setminus H)|$ . Contradiction.

### The Gotsman-Linial Equivalence $(1 \Rightarrow 3)$

**Note:** For this slide alone, we consider  $g : \{0,1\}^n \rightarrow \{+1,-1\}$ .

- Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- Consider the function g'(x) = g(x)p(x), where  $p(x): \{0,1\}^n \to \{+1,-1\}$  indicates the parity of x.
- Consider the induced subgraph H of Q<sup>n</sup> with vertex set V(H) = {x : g'(x) = 1}.
- We have  $\max{\Delta(H), \Delta(Q^n \setminus H)} = s(g) < h(n)$ .
- $\blacktriangleright |V(H)| |V(Q^n \setminus H)| = \mathbb{E}[g(x)p(x)] = \langle g, p \rangle = \hat{g}([n]).$
- Since deg(g) = n, we have  $\hat{g}([n]) \neq 0$ .
- ► Hence  $|V(H)| \neq |V(Q^n \setminus H)|$ . Contradiction.

# How did he come up with this proof? In Huang's words

**Nov 2012:** I was introduced to this problem by Michael Saks when I was a postdoc at the IAS, and got immediately attracted by the induced subgraph reformulation. And of course, in the next few weeks, I exhausted all the combinatorial techniques that I am aware of, yet I could not even improve the constant factor from the Chung-Füredi-Graham-Seymour paper.

Around mid-year 2013: I started to believe that the maximum eigenvalue is a better parameter to look at, actually it is polynomially related to the max degree, i.e  $\sqrt{\Delta(G)} \le \lambda(G) \le \Delta(G)$ .

**2013-2018:** I revisited this conjecture every time when I learn a new tool, without any success though. But at least thinking about it helps me quickly fall asleep many nights.

Excerpts from Huang's comment in Scott Aaronson's blog: https://www.scottaaronson.com/blog/?p=4229#comment-1813116 How did he come up with this proof? In Huang's words

Late 2018: After working on a project and several semesters of teaching a graduate combinatorics course, I started to have a better understanding of eigenvalue interlacing, and believe that it might help this problem.

**June 2019:** In a Madrid hotel when I was painfully writing a proposal and trying to make the approaches sound more convincing, I finally realized that the maximum eigenvalue of any pseudo-adjacency matrix of a graph provides lower bound on the maximum degree. The rest is just a bit of trial-and-error and linear algebra.

Excerpts from Huang's comment in Scott Aaronson's blog: https://www.scottaaronson.com/blog/?p=4229#comment-1813116

## **Open Questions**

- We saw that bs(f) = O(s(f)<sup>4</sup>). We saw an f where bs(f) = Ω(s(f)<sup>2</sup>). It will be interesting to find the best bound possible.
- Let c > 1/2. What is the smallest t such that every t-vertex induced subgraph of Q<sup>n</sup> has maximum degree at least n<sup>c</sup>?
- For a given graph G, can we get similar bounds on the degrees of (α(G) + 1)-vertex induced subgraphs of G?



Hao Huang@Emory:

Ex.1:  $\exists$  edge-signing of n-cube with 2^{n-1} eigs each of +/-sqrt(n)

 $\sim$ 

```
Interlacing=>Any induced subgraph with >2^{n-1} vtcs has max eig >= sqrt(n)
```

Ex.2: In subgraph, max eig <= max valency, even with signs

Hence [GL92] the Sensitivity Conj, s(f) >= sqrt(deg(f))

5:02 AM · Jul 2, 2019 · Twitter Web Client

### Thank You